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of two-phase flows, when separate mass and momentum
equations are used for each phase, is the nonhyperbolicAn approximate linearized Riemann solver is presented for

the numerical simulation of two-phase flows. This new solver is character of the governing equations [5, 11]. This leads to
based on a linearization of nonconservative products and uses an an ill-posed initial value problem which requires numerical
extension of Roe’s approximate Riemann solver. The scheme is

damping terms to obtain stable results. The most commonapplied to shock tube problem and to a standard test for two-fluid
approach to solving these equations is a numerical methodcodes. Q 1996 Academic Press, Inc.

based on staggered grids and donor-cell differencing [6,
7]. This method, now almost universal in two-fluid codes

1. INTRODUCTION like TRAC [9], RELAP [12], CATHARE [10], introduces
a large amount of numerical diffusion. More accurate

The linearized approximate Riemann solver of Roe [1] methods based on approximate Riemann solvers requires
was proposed in 1981 for the numerical solution of the some modifications within the equations in order to
Euler equations governing the flow of an ideal gas. These obtain a hyperbolic system. In one of the first attempts
last years, generalized Riemann solvers for the Euler equa- at using a Godunov-type method for computing reactive
tions with real gases have motivated many authors. Several multiphase flows, Toro [22] reinterpreted the equations
extensions of Roe’s linearization to an arbitrary equation so as to produce hyperbolic systems for each phase sepa-
of state have been proposed [2, 3]. rately.

A weak formulation of Roe’s approximate Riemann Following the leads of Drew and Lahey [15, 16], we
solver, based on the choice of a path F in the states space, introduce a virtual mass force term in the momentum
has been introduced in [4]. This weak formulation was equations. This interface exchange term which contains
applied in order to build a Roe-averaged matrix for a partial derivatives of the unknowns, makes the model
conservative system governing a homogeneous equilibrium hyperbolic. This enables us to apply numerical methods
two-phase flow. which make explicit use of the eigenvalues of the

We seek here to extend this formulation to a hyperbolic system.
nonconservative system modelling a two-component two- However, there is another difficulty due to the noncon-
phase flow. This flow consists in a mixture of water and servative form of the system, since we know that the
steam, similar to those produced in pressurized water reac- distribution theory is not suitable to define weak solutions
tor cores. The model considered here is the isentropic in this case. Several approaches have been proposed to
equal pressure two-fluid model consisting in mass and mo- define weak solutions to nonconservative systems [18,
mentum balance equations for each phase [5, 8]: 19]. In general, we need to add some information to

the nonconservative system in order to obtain a com-
t(akrk) 1 x(ak rkuk) 5 0

(1.1)
plete definition of weak solutions. This information may
be derived in different ways, for example, from a para-

t(ak rkuk) 1 x(ak rku2
k) 1 akx p 5 0.

bolic regularization of the system [17, 18]. From a numeri-
cal point of view, this nonuniqueness is reflected in

The subscript k refers to the k-phase, p is the pressure, the choice of the path F in the weak formulation of
and ak , rk , uk are respectively the volumetric average, the Roe’s solver.
density, and the velocity of the k-phase. This system is In the Section 2, we present the two-phase flow model
naturally written in a nonconservative form due to the whose numerical solutions are considered, and we look at
presence of nonconservative products akx p in the mo- the hyperbolicity of this model. Section 3 is devoted to the

construction of an approximate linearized Riemann solvermentum equations. The main difficulty in the computation
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for nonconservative systems. The linearization of noncon- We have chosen the following formulation for the virtual
servative products takes advantage of the fact that system mass force term Mvm at the right hand side of (2.1),
(1.1) can formally be written in a conservative form. Then,
following the method developed in [4], we construct a Roe Mvm 5 2avalrcvmht(uv 2 ul) 1 ul xuv 2 uv xulj, (2.4)
averaged matrix using the canonical path for a parameter
vector. We give in Section 5 some numerical results for where cvm is the coefficient of the virtual mass and r 5
shock tube problems and for the water faucet problem

rvav 1 rlal is the mixture density. Such formulation is used
proposed by Ransom [13] as a benchmark for two-fluid

in the RELAP5 code [9] and is derived from the expression
codes.

suggested by Drew [15],

2. TWO-PHASE FLOW MODEL Mvm 5 avrlcvmht(uv 2 ul) 1 uv x(uv 2 ul)
(2.5)

1 (uv 2 ul)((l 2 2) xuv 1 (1 2 l) xul)j,In this section we consider a one-dimensional two-fluid
model dealing with an isentropic two-phase flow.

where l is a void fraction dependent parameter. The value

2.1. Equations
of the coefficient of virtual mass term cvm , is As for noninter-
acting spheres and less than one-half for other shapes.
Zuber [25] suggested the use of the following expressionWe begin with the first-order differential equations of
to account for the interaction effectsmass and momentum conservation of two-fluid model

which might describe isentropic two-component two-phase
flow in a straight pipe:

cvm 5
1
2 S1 1 2ad

(1 2 ad)D , (2.6)

t(avrv) 1 x(avrvuv) 5 Gv

where ad is the discontinuous phase fraction. We will de-
t(alrl) 1 x(alrlul) 5 Gl

(2.1) fine cvm by a condition necessary to have a hyperbolic
system.t(avrvuv) 1 x(avrvu2

v) 1 avx p 5 Mv

Considering many interesting cases, the inclusion or
t(alrlul) 1 x(alrlu

2
l ) 1 alx p 5 Ml neglect of the virtual mass force in the phasic momentum

equations does not appreciably change the momentum
results. However, the inclusion of this term with itswith
temporal and spatial derivative terms has an effect on
the hyperbolicity of the system. In general [26, 27] the

av 1 al 5 1. (2.2) computation efficiency of the solution scheme is improved
by the inclusion of the virtual mass force term. The
virtual mass force term formulation chosen is not the

Here the subscript l refers to the liquid phase and v to the only one possible [21]. Another formulation will give
vapor phase; rk , uk , and ak are the mass density, the veloc- similar results.
ity, and the void fraction of the k-phase, p is the pressure In what follows, excepted for the virtual mass force term,
assumed to be equal in the two phases. To close the system which contains partial derivatives, the other terms of mass
the liquid phase is assumed to be incompressible, with and momentum transfer between phases are assumed to
constant mass density rl , while the vapor mass density is be absent. Otherwise they would appear as source terms.
given by the following state equation: Then, the system considered in our study takes the follow-

ing form:

rv 5 rv(p). (2.3)
t(avrv) 1 x(avrvuv) 5 0

t(alrl) 1 x(alrlul) 5 0
(2.7)The results, however, can be generalized to a compressible

liquid phase. The source terms Gk and Mk include terms t(avrvuv) 1 x(avrvu2
v) 1 av x p 1 Mvm 5 0

of interphase mass and momentum transfer, as well as
t(alrlul) 1 x(alrlu

2
l ) 1 al x p 2 Mvm 5 0.losses via conduction and diffusion. We will assume that

only the source term corresponding to the virtual mass
force contains partial derivatives. We define the concentration c:
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c 5
avrv

avrv 1 alrl
. (2.8) Pu1

5 S p
u1
D

u2

, Pu2
5 S p

u2
D

u1

. (2.16)

It will be useful to introduce also the pseudo-density rp The matrices corresponding to the virtual mass force term
and the pseudo-concentration cp :

are given by

rp 5 rval 1 rlav (2.9)

cp 5
avrl

avrl 1 alrv
. (2.10)

Ad(u) 5 d3
0 0 0 0

0 0 0 0

0 0 0 0

(1 2 c)uvul 2cuvul 2(1 2 c)ul u
4 (2.17)

The system (2.7) is not written in a conservative form.
However, we note that the mixture momentum ru, given by

andru 5 rvavuv 1 rlalul (2.11)

satisfies the conservation equation

Md(u) 5 d3
0 0 0 0

0 0 0 0

0 0 0 0

(1 2 c)uv 2cul 2(1 2 c) 1
4 (2.18)t(ru) 1 x(avrvu2

v 1 alrlu
2
l ) 1 x p 5 0. (2.12)

The nonconservative terms in (2.7) arise from the splitting
of this latter equation into two separate phase momentum
equations. Introducing the mixture quantities r, ru and

with
the concentration variable c, we can write, for smooth
solutions, system (2.7) in the nonconservative form

d 5
r2

rvrl
cvm . (2.19)

(I 1 Md(u)) tu 1 (A(u) 1 Ad(u)) x u 5 0, (2.13)

Assuming we overlook the terms arising from the virtualwhere the vector u and the matrix A(u) are given by
mass force in the system (2.13), we have the condensed
form

tu 1 A(u) xu 5 0. (2.20)
u 53

u1

u2

u3

u4

453
avrv

alrl

ru

alrlul

4 (2.14)

This system is still nonconservative due to the term al x p
in the liquid phase momentum equation. However, we
prove the following.

PROPOSITION 2.1. Let V be a set of physical states de-
fined byA(u) 53

0 0 1 21

0 0 0 1

Pu1
2 u2

v Pu2
2 u2

l 2uv 2(ul 2 uv)

alPu1
alPu2

2 u2
l 0 2ul

4 (2.15)

V 5 hu/(r . 0) (c [ [0, 1])j. (2.21)

Let u be a continuous solution of system (2.20) and let vand the pressure derivatives with respect to the variables
u1 and u2 are defined by be a vector valued function defined by
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V, if for any u [ V, all its eigenvalues are real. To determine
these eigenvalues we must find the four roots of a polyno-
mial of degree four Pu(l) given by

v 53
avrv

alrl

ru

ul

4 . (2.22)

Pu(l) 5 det(A(u) 1 Ad(u) 2 l(I 1 Md(u))). (2.27)

The theory of algebraic equations shows us that it is
The function v is a solution of the conservative system possible to compute the four roots of this polynomial

as algebraic functions of its coefficients. However, this
would lead to very complicated computations whichtv 1 xg(v) 5 0 (2.23)
are not necessary to determine the behaviour of the
roots li(u).with the flux function defined by

Actually, we prefer to use a perturbation method by
introducing a small parameter j. We denote by cm

the speed of sound in the homogeneous two-phase
mixture:

g(v) 53
avrvuv

alrlul

avrvu2
v 1 alrlu

2
l 1 p

u2
l

2
1

p
rl

4 . (2.24)

cm 5 Sp
r
D1/2

c
5 S rv

avr
D1/2

cv , (2.28)

Proof. Let u be a continuous solution of (2.20). We where cv is the speed of sound in the vapor phase. The
have to show that the liquid velocity ul in our case satisfies speed cm is the usual speed of sound in the mixture
the following conservative equation: obtained for the homogeneous (equal phase velocity)

model. For a two-fluid model including unequal phase
velocity and a virtual mass term, the natural speed of

tul 1 x
u2

l

2
1

x p
rl

5 0. (2.25) sound is given by

We split the liquid phase momentum equation of system
am 5 S rrp 1 r2cvm

r1rp 1 r2cvm
D1/2

cm . (2.29)(2.20) into

ul(t(alrl) 1 x(alrlul)) 1 alrl(tul 1 ul xul) 1 al x p 5 0. The speed of sound in stratified and homogeneous flows
respectively correspond to the cases cvm 5 0 and cvm 5 y.(2.26)
We assume that the relative velocity between the two
phases is much lower than the speed of sound of the two-Then, using the liquid phase mass conservation equation
phase mixture which is the case in many physically interest-and dividing the above equation by alrl leads to Eq. (2.25).
ing configurations, for example for steam and water. Then,This settles the proof of Proposition 2.1.
the small parameter j will be given by the dimensionless

Remark. Proposition 2.1 shows that the systems (2.23) relative velocity,
and (2.20) are equivalent for smooth solutions. However,
we are solving the nonconservative system, first, because
this is the model used by many industrial codes [10, j 5

uv 2 ul

am
, (2.30)

12]. Second, this nonconservative two-phase flow model
degenerates correctly to a one-phase flow model when
the liquid void fraction tends to zero. and we will assume that uju ! 1. Using a perturbation

method around j 5 0 we prove the following.

2.2. Hyperbolicity of the System PROPOSITION 2.2. Let j be given by Eq. (2.30) and let
c0

vm be equal toIn order to study the hyperbolicity of the system (2.13)
we are looking for the eigenvalues li(u) (i 5 1, 4) of this

c0
vm 5 (4c(1 2 c))1/2. (2.31)system. We recall that the system (2.13) is hyperbolic on
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We can find a positive number j0 so that for any u that lies We look for the roots of the polynomial Pu(z, j) in a
neighbourhood of a root z0 of the polynomial p0(z). Wein the set V* defined by
distinguish two cases, whether z0 is a simple root or a
double root [23, 24].V* 5 hu [ V : uju # j0 , cvm $ c0

vmj
First case. z0 is a simple root, z0 5 61. Then, the first-

order approximation, defined for j ? 0 close enough tothe eigenvalues li(u), i 5 1, 4, are real and distinct. More-
zero, is given byover, these eigenvalues have the behaviour for j small

enough,
z(j) 5 z0 1 z1j 1 o(j 2) (2.36)

l1 5
uv 1 ul

2
2 am 2

1
2 S(2c 2 1)r2cvm

rlrv 1 r2cvm
1

(2cp 2 1)rp

rp 1 rcvm
D ur with

1 amo Su2
r

a2
m
D z1 5 2

p1(z0)

p90(z0)
. (2.37)

l2 5
uv 1 ul

2
1

rp

2(rp 1 rcvm) Second case. z0 is a double root of p0(z), z0 5 0, and
p1(z0) 5 0. Then, at first order in j, the double root splits
into two simple roots, defined for j ? 0 close enough to

3 S1 2 2cp 2
r

rp
Ïc2

vm 2 (c0
vm)2D ur 1 amo Su2

r

a2
m
D

(2.32)
zero and given by

z6(j) 5 z0 1 z6
1 j 1 o(j2), (2.38)l3 5

uv 1 ul

2
1

rp

2(rp 1 rcvm)

where z6
1 are the two roots of the equation

3 S1 2 2cp 1
r

rp
Ïc2

vm 2 (c0
vm)2D ur 1 amo Su2

r

a2
m
D

p00(z0)z2
1 1 2p91(z0)z1 1 p2(z0) 5 0. (2.39)

l4 5
uv 1 ul

2
1 am 2

1
2 S(2c 2 1)r2cvm

rlrv 1 r2cvm
1

(2cp 2 1)rp

rp 1 rcvm
D ur

Consequently, the roots remain real at first order and
the system is hyperbolic if the condition [(p91(0))2 2
p2(0)p00(0)] . 0 is satisfied. This condition is equivalent to1 amo Su2

r

a2
m
D ,

cvm $ c0
vm 5 (4c(1 2 c))1/2. (2.40)

where ur 5 uv 2 ul is the relative velocity between phases.

Finally, using (2.30) and (2.33)–(2.40), we obtain the first-Proposition 2.2 shows that the inclusion of virtual mass
order approximation in j of the eigenvalues given by theforce term, with cvm $ c0

vm , makes a well-posed model.
expressions (2.32).

Proof. It is convenient to introduce the dimen-
sionless variable

3. AN APPROXIMATE RIEMANN SOLVER FOR
NONCONSERVATIVE SYSTEMS

z 5
1

am
Sl 2

uv 1 ul

2 D . (2.33)
In Godunov’s method [23], the approximate solution

un11, at time (n 1 1) Dt, is obtained by solving Riemann
problem at cell interfacesWe can then rewrite [20] the polynomial Pu(l) as

Pu(z; j) 5 p0(z) 1 p1(z)j 1 p2(z)
j 2

2
1 q(z; j)j 2 (2.34) un11

i 5 un
i 1

1
Dx

Exi

xi21/2

ue Sx 2 xi21/2

Dt
, un

i21 , un
i D dx

(3.0)
with 1

1
Dx

Exi11/2

xi

ue Sx 2 xi11/2

Dt
, un

i , un
i11D dx,

uq(z; j)u # (1 1 uzu)sw(j) if s [ N and ' lim
jR0

w(j) 5 0.
where ue((x 2 xi21/2)/Dt, un

i21 , un
i ) is the exact solution of

the Riemann problem(2.35)
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tu 1 x f(u) 5 0 tu 1 A(uL , uR)F xu 5 0

u(x, 0) 5 un
i21 (x , xi21/2), u(x, 0) 5 un

i (x . xi21/2). u(x, 0) 5 uL (x , 0), u(x, 0) 5 uR (x . 0),
(3.6)

The solution of Riemann problem being unknown for our where A(uL , uR)F is a matrix depending on the data (uL ,
nonconservative model, we cannot construct a Godunov uR) and on a smooth path F(s, uL , uR) linking the states
type numerical scheme [24]. Then, we suggest the use of uL and uR . The matrix A(uL , uR)F must satisfy the follow-
an approximate Riemann solver. ing property:

3.1. Extension of Roe’s Scheme E1

0
A(F(s; uL , uR))

F

s
(s; uL , uR) ds 5 A(uL , uR)F(uL 2 uR).

To solve the nonlinear Riemann problem for hyperbolic
systems of conservation laws, (3.7)

tu 1 x f(u) 5 0
This condition, which is a generalization of Roe’s condi-

tion (3.3), shows that a shock (uL , uR) with speed s, satisfiesu(x, 0) 5 uL (x , 0), u(x, 0) 5 uR (x . 0)
(3.1)

the generalized Rankine–Hugoniot condition given in [18]

Roe [1] introduces a local linearization

E1

0
(A(F(s; uL , uR)) 2 sI)

F

s
(s; uL , uR) ds 5 0. (3.8)

tu 1 A(uL , uR) xu 5 0, (3.2)

We refer the reader to [4] for more details on this formula-where A(uL , uR) is some average Jacobian matrix, known
tion of Roe’s approximate solver and its application toas a Roe-averaged matrix. The matrix A(uL , uR) is con-
conservative two-phase flow models.structed to have the following property:

We note that for a conservative system the right-hand
side of (3.7) is independent of the path F:f(uR) 2 f(uL) 5 A(uL , uR)(uR 2 uL). (3.3)

This property ensures that shocks of linear system (3.2) E1

0
A(F(s; uL , uR))

F

s
(s; uL , uR) ds 5 f(uR) 2 f(uL).

are shocks of the nonlinear system (3.1), satisfying the
Rankine–Hugoniot condition:

Thus, (3.7) coincides exactly with Roe’s condition (3.3). A
s(uR 2 uL) 5 f(uR) 2 f(uL). (3.4) shock wave solution of the linearized system satisfies the

Rankine–Hugoniot condition for the nonlinear conserva-
tive system (3.1) and is independent of the path F. In thisSuch a matrix A(uL , uR) was first constructed by Roe
case, the path F is only useful to linearize the Jacobianfor Euler equations with perfect gases [1], and several
matrix A(u) to obtain A(uL , uR)F .extensions to real gases have been proposed (see [4] and

On the other hand, we remark that the above definitionthe references therein). However, Roe’s method does not
(3.7) does not require a flux function f(u). Thereby, thisapply to a nonconservative system,
weak formulation allows us to construct approximate Rie-
mann solvers for hyperbolic nonconservative systems.

tu 1 A(u) xu 5 0, (3.5) However, for such systems, the choice of the path F will
be important because both the exact solution and the ap-

for which the matrix A(u) is not the derivative of a proximate solver are strongly dependent on the path. In
flux function f(u). Specifically, we need to define, for non- order to clarify the choice of the path F for nonconserva-
conservative systems, a condition equivalent to condition tive systems, we propose to separate the path contributions
(3.3), based upon a generalized Rankine–Hugoniot con- on two above problems:
dition.

—the definition of shock wave solutions for nonconser-Thus, we use a weak formulation of Roe’s approximate
vative systems which needs a path with a physical meaningRiemann solver introduced in [4]. In this formulation, we

consider approximate solutions to the nonlinear Riemann —the linearization of the nonlinear matrix A(u) which
does not need a physical path.problem which are exact solutions to the linear problem
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3.2. Nonconservative System Case
ã1 5

1
pR 2 pL

E1

0
a1

p
u

F

s
(s, uL , uR) ds. (3.12)

Concerning the first point, some authors [17, 18], suggest
an approach motivated by physical considerations. Let us

The integral in (3.12) is dependent on the path F and maymention the work of Sainsaulieu [17], which introduces
be difficult to compute, since the definition of the pathtravelling waves u(x, t) 5 û(x 2 st), s is the shock propaga-
requires to solve the differential system (3.9). As this ‘‘vis-tion velocity, solutions of the second-order convection–
cous’’ path will not be used for the linearization of thediffusion system
matrix A(u), it would be preferable to calculate by other
means, the average void fraction ãl . The following proposi-tu 1 A(u) xu 2 x(D(u) xu) 5 0, (3.9)
tion gives the average ãl for which the nonconservative

where D(u) is a diffusion tensor. If u(x, t) is a travelling system (2.20) and the conservative system (2.23) have the
wave solution of (3.9), the vector valued function v«(x) 5 same shock waves.
û(x/«) is a solution of the differential system:

PROPOSITION 3.2. Let ãl be defined by

2sv9« 1 A(v«)v9« 2 «(D(v«)v9«)9 5 0.

ãl 5 2
aL

l aR
l

aL
l 1 aR

l
; (3.13)

Then, we can define a shock wave solution of the system
(3.5) as the limit lim«R0 v«(x), when the diffusion is ne-
glected, of travelling wave solution of (3.9). When « tends then the nonconservative system (2.20) and the conservative
to zero, v«(x) converges to the following discontinuous system (2.23) have the same Rankine–Hugoniot conditions.
function:

Proof. Since the first three equations of systems (2.20)
and (2.23) are the same, we have to compare the Rankine–

v0(x) 5 Hû(2y) if x , 0

û(1y) if x . 0.
Hugoniot conditions for the fourth equation. From Eqs.
(3.8) and (3.11), we obtain for the nonconservative system

Turning back to our approximate Riemann solver and us-
[alrlu

2
l ] 1 ãl[p] 5 s[alrlul], (3.14)ing a ‘‘viscous’’ path,

F(s; uL , uR), s [ [0, 1], (3.10) where [?] 5 (?)R 2 (?)L . Using the mass conservation for
the liquid phase, we get

which is the viscous profile linking the states uL 5 û(2y)
and uR 5 û(1y), solution of (3.9), Eq. (3.7) becomes

M 5 (alrl(s 2 ul))L 5 (alrl(s 2 ul))R (3.15)
A(uL , uR)F(uR 2 uL) 5 h(uR) 2 h(uL) 1 ã1(pR 2 pL).

and(3.11)

The flux function h(u) and the vector p are defined by ãl[p] 5 M[ul]. (3.16)

On the other hand, the Rankine–Hugoniot condition for
the conservative system (2.23) gives

h(u) 53
avrvuv

(1 2 al)rlul

arvu2
v 1 (1 2 al)rlu

2
l 1 p

(1 2 al)rlu
2
l

4 ,

Su2
l

2
1

p
rl
D5 s [ul]. (3.17)

From Eqs. (3.16) and (3.17) we deduce

p 53
0

0

0

p
4 M

rlãl

5 s 2
1
2

(uL
l 1 uR

l ). (3.18)

Finally, using (3.18) and (3.15), we obtain the average void
fraction given by (3.13).and the average void fraction ãl is given by



APPROXIMATE RIEMANN SOLVER 293

3.3. Conservative System Case for the system (2.20) which does not include the virtual
mass force term. Then, we will extend the method for the

Using the average ãl suggested by Proposition 3.1, we
complete system.

have to solve now the Riemann problem for the conserva-
tive system

4.1. Two-Fluid Model without Mass Term

We apply the method presented in Section 3 with thetu 1 xh̃(u, ãl) 5 0 (3.19)
parameter vector chosen as

with

w 53
w1

w2

w3

w4

453
Ïavrv

Ïalrl

Ïavrvuv

Ïalrlul

4 (4.1)
h̃(u, ãl) 53

avrvuv

alrlul

avrvu2
v 1 alrlu2

l 1 p

alrlu2
l 1 ãl p

4 . (3.20)

and w0(w) given by the expressionThus, the path F will only have an effect upon the lineariza-
tion of the nonlinear Jacobian matrix

A(u, ãl) 5
h̃(u, ãl)

u
.

w0(w) 53
w2

1

w2
2

w1w3 1 w2w4

w2w4

4 . (4.2)

To construct the Roe-type matrix A(uL , uR)F , we follow
the method introduced in [4]. The main feature is the
choice of the canonical path for a parameter vector w,

Straightforward computations yieldF(s; uL , uR) 5 w0(wL 1 s(wR 2 wL)),

where w0 is a smooth function such that w0(wL) 5 uL ,
w0(wR) 5 uR , and A0(w) 5 w0/w is a regular matrix
for every state w. Using this path, we define Roe’s matrix by

B(uL , uR)F 53
2w1 0 0 0

0 2w2 0 0

w3 w4 w1 w2

0 w4 0 w2

4 (4.3)

A(uL , uR)F 5 C(uL , uR)FB(uL , uR)21
F (3.20)

with

and
B(uL , uR)F 5 E1

0
A0(wL 1 s(wR 2 wL)) ds

C(uL , uR)F 5 E1

0
A(w0(wL 1 s(wR 2 wL)))

3 A0(wL 1 s(wR 2 wL)) ds.
C(uL , uR)F 53

w3 0 w1 0

0 w4 0 w2

P̃w1
P̃w2

2w3 2w4

ãlP̃w1
ãlP̃w2

0 2w4

4 , (4.4)

The choice of the canonical path is motivated by the results
obtained for the Euler equations and the homogeneous
two-phase flow model.

where wi denotes the arithmetic mean of wi and P̃wi
is an

4. APPLICATION TO THE TWO-FLUID MODEL average of the pressure derivative (p/wi)wj
given by

In this section, using the above weak formulation, we
build an approximate Riemann solver for the two-fluid P̃wi

5 E1

0

p
wi

(wL 1 s(wR 2 wL)) ds. (4.5)
model (2.7). First, we construct the Roe-averaged matrix
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Finally, using Eq. (3.20), we find the Roe-averaged matrix where the Roe-averaged matrix is given as a sum of two
averaged matricesfor the system without the virtual mass term

A(uL , uR)vm
F 5 A(uL , uR)F 1 d̃Ad(uL , uR)F . (4.11)A(uL , uR)F 5

The first matrix is the Roe-averaged matrix for the system
without the virtual mass term and the second is the linear-
ized matrix corresponding to the virtual mass term.3

0 0 1 21

0 0 0 1

P̃1 2 ũ2
v P̃2 2 ũ2

l 2ũv ũl 2 ũv

ãlP1 ãlP̃2 2 ũ2
l 0 2ũl

4 , (4.6)

5. NUMERICAL RESULTS

Once the Roe-averaged matrix has been constructed,
the linear Riemann problem is relatively easy to solve bywhere P̃i is an approximation of the pressure derivative
using its eigenvalues lk

i21/2 and its eigenvectors Rk
i21/2 . If(p/ui)uj

given by
we decompose

un
i 2 un

i21 5 O
k

bk
i21/2Rk

i21/2 (5.1)
P̃i 5

P̃wi

2wi

then, the exact solution of the linear Riemann problem
and ũk is a Roe-averaged velocity given by

(3.6) and the approximate solution of (3.5) are given by

ua(j, un
i21 , un

i ) 5 un
i21 1 O

lk
i21/2,j

bk
i21/2Rk

i21/2 , (5.2)ũk 5
Ï(rkak)RuR

k 1 Ï(rkak)LuL
k

Ï(rkak)R 1 Ï(rkak)L
. (4.7)

4.2. Two-Fluid Model with Virtual Mass Term where the sum is over all the eigenvalues for which
lk

i21/2 , j. Equivalently,We build now the approximate Riemann solver for the
complete system (2.7). The previous section shows that the
canonical path for Roe’s parameter vector w, leads to a ua(j, un

i21 , un
i ) 5 un

i 2 O
lk

i21/2.j

bk
i21/2Rk

i21/2 . (5.3)
linearized Jacobian matrix which is equal to the exact Ja-
cobian evaluated at some average state ũ defined by ũk ,
P̃i , and ãl, Substituting this approximate solution into (3.0) and set-

ting j 5 (x 2 xi21/2)/Dt in the first integral and j 5 (x 2
xi11/2/Dt in the second one leads toA(uL , uR)F 5 A(ũ). (4.8)

As for the exact Jacobian matrix A(u), the linearized un11
i 5 un

i 1
Dt
Dx

EDx/2Dt

0
ue(j, un

i21 , un
i ) dj

(5.4)matrix A(uL , uR)F has generally two complex eigenvalues.
We expect that the inclusion of the virtual mass term leads

1
Dt
Dx

E0

2Dx/2Dt
ue(j, un

i , un
i11/2) dj.to a hyperbolic linearized system, without sensibly chang-

ing the momentum results. We have to linearize this new
nonconservative system, but there is no equivalent conser- The expression of the numerical scheme follows from (5.2)
vative system that would inspire the linearization of our and (5.3),
system. Thus, we propose to linearize the matrices Ad(u)
and Md(u) using the same average state ũ. Then, the linear-
ization of system (2.13) is given by un11

i 5 un
i 2

Dt
Dx

(F 2(un
i , un

i11) 1 F 1(un
i21 , un

i )), (5.5)

(I 1 Md(ũ))tu 1 (A(uL , uR)F 1 Ad(ũ))xu 5 0. (4.9) written in a nonconservative form

A routine calculation shows that the system (4.9) may be F 6(un
i21 , un

i ) 5 A6(un
i21 , un

i )F(un
i 2 un

i21). (5.6)
written under the form

The positive and negative part of the Roe-averaged matrix
tu 1 A(uL , uR)vm

F xu 5 0, (4.10) are given by
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FIG. 1. Riemann problem with cvm 5 2.

A6(un
i21 , un

i )F 5 Ri21/2L
6
i21/2R21

i21/2 , (5.7) State uL . rL 5 25 kgm23, cL 5 0.1, uL 5 50 ms21,
ulL

5 15 ms21,

where Ri21/2 is the matrix containing the eigenvectors of State uR . rR 5 20 kgm23, cR 5 0.1, uR 5 50 ms21,
the Roe-averaged matrix, and L6

i21/2 is the diagonal matrix ulR
5 20 ms21.

containing the positive and the negative part of the eigen-
The vapor phase is assumed to be an ideal isentropicvalues

gas. The computations have been done with 300 nodes and
using a virtual mass coefficient equal to 2 and 50. TheL6

i21/2 5 diag(l16
i21/2 , ..., lm6

i21/2) (5.8)
former value is closer to the physical value of this coeffi-
cient. Figures 1 and 2 give some flow characteristics in

with each case. The solution is composed by five constant states
separated by rarefaction waves or shock waves. The propa-

lk2
i21/2 5 min(0, lk

i21/2), lk1
i21/2 5 max(0, lk

i21/2). (5.9) gation velocities of the second and third waves being close
to each other for small values of the virtual mass coefficient,
these waves are not well separated in Fig. 1.We present now some test problems and show the nu-

merical results obtained, using the approximate Riemann
PROBLEM 2 (More on the shock tube problem). Thissolver built in Section 4 and the first-order numerical

problem consists in a Riemann problem for the systemscheme (5.5).
(2.7), where the left and right states are given by

PROBLEM 1 (Shock tube problem). This problem con-
sists in a Riemann problem for the system (2.7), where the State uL . rL 5 1.9 kgm23, cL 5 0.3, uL 5 10 ms21, ulL

5
6 ms21,left and right states are given by
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FIG. 2. Riemann problem with cvm 5 50.

State uR . rR 5 30 kgm23, cR 5 0.1, uR 5 10 ms21, ulR
5 nant vapor, such that the void fraction is 0.2 and the column

has a uniform pressure of 105Pa.6 ms21.
The boundary conditions are specified velocities of 10

The computations have been done with 300 nodes and m/s for the liquid and 0 m/s for the vapor at the inlet, and
using a virtual mass coefficient equal to 100. In Section 4 constant pressure at the outlet. The water faucet problem
we proved that taking a void fraction average given by has a particularly simple analytical solution when pressure

variation in the vapor phase is ignored [7]. This analytical
solution was used as a code test in [14].ãl 5 2

aL
l aR

l

aL
l 1 aR

l
, (5.6)

As illustrated on Fig. 4 a void wave develops and is
propagated at liquid velocity. A countercurrent wave,
propagating at vapor velocity, develops another shock.the nonconservative system (2.20) and the conservative
Once the void wave exits the pipe, a steady void profilesystem (2.23) have the same shock waves. Figure 3 shows
is established. The calculation was carried out until athe numerical results for two void fraction averages, the
steady state is reached with 100 nodes and a constantfirst one given by the expression (5.6) and the second one
CFL number equal to 0.9. Figure 5 shows the vapordefined by ãl 5 ÏaL

l aR
l . We remark that the results are

void fraction profile at various time. These results clearlyslightly different.
demonstrate the ability of the numerical scheme to cap-

PROBLEM 3 (Water faucet problem). This test, pro- ture discontinuities.
posed by Ransom [13] consists in a vertical water jet, con- In order to test the convergence and the stability charac-
tained within a cylindrical channel, that is accelerated un- ter of the scheme, computations have been made using a

discretization with 50 and 200 nodes, but constant CFLder the action of gravity. At the initial state, the pipe is
filled with a uniform column of water surrounded by stag- numbers equal 0.9. Figure 6 gives the void fraction profile
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FIG. 3. Riemann problem for two void fraction averages.
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for the various discretization. An interesting feature of the
results shown in Fig. 6 is that there are no oscillations at
the discontinuity of the void fraction.

6. CONCLUSION

We have presented here a numerical method for the
simulation of an isentropic two-fluid model based on a
linearized Riemann solver. A linearization of nonconserva-
tive product and an extension of Roe’s scheme have been
used in order to construct this approximate Riemann
solver.

FIG. 4. Schematic of the water faucet problem. The solution of Riemann problem is unknown for our
nonconservative system. Thus, there is no exact solver in
order to check validity of the numerical solutions.

FIG. 5. Void fraction profile for the water faucet problem.
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FIG. 6. Void fraction profile for the water faucet problem (continued).

5. H. B. Stewart and B. Wendroff, J. Comput. Phys. 56, 363 (1984).Therefore, our results should be compared with the ana-
6. D. R. Liles and W. H. Reed, J. Comput. Phys. 26, 77 (1978).lytical solution for the physical problems, such as the water
7. J. A. Trapp and R. A. Riemke, J. Comput. Phys. 66, 62 (1986).faucet problem. The comparison for this last case showed
8. M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow (Eyrol-that the numerical method is stable and capable of generat-

les, Paris, 1975).ing accurate nonoscillating solutions for two-phase calcula-
9. NREG/CR-3858, L.A-10157-MS, 1986 (unpublished).tion. However, there is no theoretical background to en-

10. J. C. Micaelli, 87-58, CEA, France, 1987 (unpublished).sure that computed shocks have always the correct speed.
11. V. H. Ransom and D. L. Hicks, J. Comput. Phys. 75, 498 (1988).This work is a first step to the study of a more complete
12. V. H. Ranson et al., NUREG/CR-1826, 1982 (unpublished).two-fluid model consisting of mass, momentum, and energy
13. V. H. Ransom, Numerical Benchmark Tests, Multiphase Science and

balance equations for each phase. In fact, the difficulties Technology, Vol. 3, edited by G. F. Hewitt, J. M. Delhaye, and N.
in the computation of this model are, once more, the non- Zuber (Hemisphere, Washington, DC/New York, 1987).
hyperbolic character of the governing equations and the 14. V. H. Ransom and V. Mousseau, ‘‘Convergence and Accuracy of the

RELAP5 Two-Phase Flow Model,’’ in Proceedings, ANS Interna-nonconservative form of the system. Introducing an inter-
tional Topical Meeting on Advances in Mathematics, Computations,face exchange term in the momentum equations is suffi-
and Reactor Physics, Pittsburgh, Pennsylvania, 1991.cient to make the complete model hyperbolic. Moreover,

15. D. A. Drew, Int. J. Multiphase Flow 5, 233 (1979).an equivalent conservative system can be found in order
16. R. T. Lahey, Int. J. Multiphase Flow 6, 281 (1980).to linearize the nonconservative products.
17. L. Sainsaulieu, Thèse de Doctorat, Ecole Polytechnique, 1991 (unpub-

lished).
REFERENCES 18. Ph. Le Floch, Commun. Part. Diff. Equa. 13, 669 (1989).

19. J. F. Colombeau and A. Y. Le Roux, in Non Linear hyperbolic
1. P. L. Roe, J. Comput. Phys. 43, 357 (1981).

Problems, Lecture Notes in Mathematics, Vol. 1270 (Springer-Verlag,
2. P. Glaister, J. Comput. Phys. 74, 382 (1988). New York/Berlin, 1987), p. 103.
3. H. C. Yee, NASA TM-89964, 1987 (unpublished). 20. A. Kumbaro, Thèse de Doctorat, Université Paris XI, 1992 (unpub-
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